
UNCLASSIFIED

AD 276 290

ARMED SERVICES TECHNICAL INFORMATION AGENCY
ARLINGTON HALL STATIO4
ARLIN GTON 12, VIRGINIA

UNCLASSIFIED



NOTICE: iTen gove.n nt or other dravings, speci-
fications or other data are used for any purpose
other than in connection with a definitely zelated
goverc=nt pr.)curezent operaticon, the U. S.
Vovernnt thereby incurs no responsibility, nor any
obligation -natsocver; and the fact that the Govern-
-nt =ya have for-Ljated, fUrnisbed, or in any way
supplied the said drawings, specificatIcns, or other
data is not to be regarded by inplication or other-
wise as in any manner licensing the holder or any
other person or corporation, or conveying any rights
or permission to =nnufacture, use or sell any
patented invention thav =ay in any way be related
thereto.



i - , +61-90

HEADQUARTERS

i< AIR FORCE SPECIAL WEAPONS CENTER"A AIR FORCE SYSTEMS COMMAND
_, KIRTLAND AIR FORCE BASENEW MEXICO

IC- C=,!I
... ... ,,,i..

II

j STUDIES OF RESPONSE OF ARCHES AND DOMES

UNDER DYNAM,.C LOADS

by ASTiA
T. Huang I

S. lyengar

IR. L.Jnig

October 061A

Univeraity of Illinois

Dpar*rncnt of Civil .iglneering



r 7vwTrTr-.i T we'* '. '..

HEADQUARTERS
AIR FORCE SPECIAL WEAPONS CENTER

Air Force Systems Com, and
Kirtlsnd Air Force Base

New Mexico

When Government drawings, specifications, or other data are used for
any purpose other than in connection with a definitely related Government
procurement operation, the Uni;cd States Government thereby incurs no
responsibility nor any obligation whatsoever; and the fact that the Government
may have formulated, furnished, or in any way supplied the said drawings:
specifications, or other data, Is not to be regarded by implication or other-
wise as in any manner licensing the holder or any other person or corporation,
or conveying any rights or permission to manufacture, use, or sell any
patented invention that may in any way be related thereto.

This report is made uvailable for study upon the understanding that the
Government's prop:letsry interests in und relating thereto shall not be Im-
paired. In case of apparent conflict between the Government's proprietary
interests and those of others, notify the Staff Judge Advocate, Air Force
Systems Command. Andrews AF Base. Wt.hington 2:, DC.

This report is published for the exchangc =nd stimulation of Ideas; it does
not neccefarily express the intent or policy of any higher headquarters.

Qualified requesters may obtain copies of this repturt from . STIA.
Orders will be expedited if placed through the librarian or other staff member
designated to request and receive documents from ASTIA.



i TR-61-QG

!

|

STUDIES OF RESPONSE OF ARCHES AND DOMES

UNDER DYNAMIC LOADS

i by
T. Huang

S. Iyengar

R. L. Jennings

October 19C1

Approved by
A. R. Robinson and A. S. Veletsos

University of Illinois
Department of Civil Engineering

.

Research Ditcctorate
AIR FORCF SPEC!'kl, WEAPONS CENTER

Air Force Systems Command
Kirtland Air Force Base

New Mexico
'I
.1.

Approved.

I Colonel USAF

Director. Research Directora .

I

Project 1080
Task 108002
Contract AF 29(60)-' 591

I



TR Qi-90

.-

ABSTRACT

This report, consisting of Parts I. II and Ill, is concerned with three
different aspects of the response of arches and domes under dynamic loads.

In Part I ihe accuracy of an approximate design method for arches sub-

- jected to dynamic loads is evaluated by comparing the predictions of this -nethod
with the exact solutions. Primary emphasis is placed on the effects of loads
mbich are uniformly distributed aroand the arch.

In Part II the response of circular elastic arches under a moving pressure
pulse is investigated by the modal method of analvsis. Various combinations of
natural modes are considered, and the combination of the smallest number of
modes which satisfactorily approximates the exact solution is determined. It
is concluded that good approximation to the true response can be obtained by
considering th contributions of the first antisymmetrical and the first two sym-
metrical natural modes of vibration.

Part ill presents a derivation of an approximate theory for the dynamic
response of spherical shells loaded unsymmetrically by time-varying pressures.
Non-linear effects are considered so that the resulting equations reflect the
buckling tendencies associated with large-deflection behavior.

PUBLICATION PEVIEW

This report has been reviewed and is approved.

JOHN 3. DISHUCK
Colonel USAF
Deputy Chief of Staff for Operations
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I
EVAUATION OF A DESIGN NML CD FR ARCMES SUBJECTED TO DYNAMIC WADS

1. Object and Scope

Il Thi purpse of the st dcd dc-crfbcd in this part of the report

T was to evaluate the accuracy or the design method presente" .n ReferenL. 1*

for arches subjected to the pressures associated with an atomic explosion.

The approach used consists of evaluating the response of several arches by

this method and comparing the results with those obtained on the basis of

L the method reported in Reference 2. In the latter method, the actual arch

is replaced by a discrete framework consisting of a series of rigid bars,

flexible Joints, and concentrated point masses. For the sake of brevity,

this.method will be referred to as the "exact" method, and the method of

Ref. 1 as the approximate method.
t.

The solutions presented are for two-hinged, circular, elastic

arches of uniform cross section. The majority of the solutions are for a

uniform all-around pressure with a time-wise variation represented by a

triangle with an initial peak. Some results are also presented for a tri-

angular pressure pulse moving across the arch,

L. Inasmuch as Reference I is not readily available, a brief de-

scription of the approximate method is given in the following section. The

"exact" method is described in aetail in Reference 2.

', Review of Approximate Method

in this method the actual loading on the arch is separated into

a symmetrical component and an antisymmetrical component, as showc in Fig. 1.

The intensity of the press ae for the symmetrical component, pc' is con-

sidered to be constant around the arch. Similarly, for tne antisymmetxical

component, the pressure intensities, z., for t,' windvacr and leeward sides

are considered to be equal but of opposite sii.I
* Rcfere.!,e figure and equation numbers refer to those in each part of the

report.



I The rsponse unaer the s),setrical component of loading is evalu-

ated by considering two modes of deformation:

(a) The "uniform cmpression" rodz. which is considered to

i. produce a uniform compression without any benling, and

(b) The 'bending-coupression" mode in which the arch bends in-

I ward at the crown and out.erd near the haunches. It is

assumed that the bending moment at the crown is due to

1. this mode only.

The int:nsity of the load associated with the uniform compression mode is

taken as the intensity of the syssetricAl load componcnt, whereas the in-

tensity of the load associated with the compression-bending mode is taken

as one-third of that for the uniform compression mode.

The response due to the antivymmetrical component of loading is

evaluated by consid ring the so-called -deflection mode" which is anti-

symmetrical about the crown. Thus the computation of the response in each

1. !mode involves the analysis of a sinjl t-degree-of-freeom system.

The natural pericdsof the arch in the various modes of deforma-

Ii tion are determined as follows: For a circular arch with uniform cross

section, the natural period of the uniform compression mode, TU ., is taken

as

Tuc - 2x 4J i (iW

where m denotes the mass per unit of length of the arch, R the radius o.

the arch, A the cross sectional area, and E the modulus of elasticity of

the material of which tte arch is composed.

The period of the berdLg-compressior mode for no thrust in the

arch, Tcb is taken equal to the period of a rL.,n)y supported bets hving

a span equal to one-third the a., L.ensth of the arch, I.e.

I
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2 b r (2)

i e~7b " E
wjhere

"cb "

The synbol cP denotes the angle of opening of the arch, as sh3un In Fig. 1.

The prime On T Is used to Indicate that the effect of the thrust is not

considered in this expression.

TIhe corresponding period of the deflection =odes T,, is tak~en

as 2

! d (4)

where

Ld 1 2()

and Cl Is a co'rrection factor accounting for the fact that the arch does

not set entirely as a bead. The following expressions are given for C1:

For a hinged arch,

nC l5 (6a)

and for a fixed arch

C, n 2+1 
6,

n2 --0.,5

where

2s
n . 00-(7)

The "actual" periods, Tcb and Td, woich Incorporete the effect

of the thrust, are determined approximately )vN itplylmg the velues of

Tb and T, by the fact-,r



Per

where p is the intensity of the "model pressure" on the arch a, the in-

stant that the corresponaing model displacement is maximum and Per is the

critical static buckling pressar-. For a n:a.jld arch, Per is given by the

equation

,A52 Ei 8
Per L- 01)

0

With the intensitr" of the loading and the value or the natural

period or vibration for each mode of deformation determined, the response

of the arch in each or these rodes is evaluated by analyzing the arch as

system with a single degree of freedom.

For en arch subjected to the e~mmetrical component of loading

shown in Fig. 1, the axial force associated with the uniform compression

mode is determined from the equation

where pR is approximately the force produced under static conditions, and

(A.F.) N is the amplification factor for X. This factor depends on the shape

of the applied pressure and the ratio of te duration or the pulse to the

natural period cf vibration of the particular mode of deformation considered.

The max.mtu.bending moment aesociated with th bending-coxpression -vde

occurs at the quarter points of tho arch, end ma, be expressed as

H - (A.F.) (10)



where the static moment, HIP is taken as

- 0 o Cr -P2(U

7he first factor on the right side of this expression represents the nexi-

am. moment In a simply supported beam be,,trg a spsn length LIcb, as defined

by 3q. (3), &ad subjected to a uniform s'.atic pressure or intensity P.3

2he symbol r represerts the radius or gyration of the crons section of the

arch. "%e second factor accounts for the effect of arch curvature. The

smplification factor (A.?. )N must be determined on the basis of Mhe period

or the compression-ben'Iing mode, Tcb.

For the ntisymetrical component or loading shown in Fig. 1, the

bonding mozent is determined from Eq. (10). However, the ampirication

ractor must be based on the reriod or the deflection zodc T jP and the

static moment must be determined for a prussure pd and a length Ld as given

by Eq. (5). Fnr a hinged arch, the e.peso for M. becomes

a 32 Rd ' r 2 (12)211
The effect of the axia thrust is taken Into account In figuring

the bending resistance of the arch. For the comprecsion b~iding mcde, the

tbending re4iatance is taken as the product of the corresponding rcoltAnce

for no thrust multiplied by the factor

1-/pe'
where per is the buckling load corresponding to a length I.. R IP01.For

I.the deflection ude, the reduction Victor Is o n a
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where Pr i as preiounly defined. She inverse of these factors can aso
be interpreted as magnification factors to be applied to Eq. (10).

3. Rer "-ts of Comarisons for Arches Uhder Mniform Pressure

T 3.1 General. The response cu-rves presented in 'Ihe remaind~r of
ths pert of the report are for tuo-binged circular elastic arches of uni-

form cross section subjected to a uniform all-around pressure pUlse. The

pressure-time relationship is represented by an initially peaked triangle,

K as shown in the upper left corner of Fig. 2a. Ine peak intensity of the

pressure Is denoted by p0 and the duration of the pulse by td. . 2e values

of these quantities are specified in terms of the dimensionless ratios

p oc/Pcr and td/To, where Pcr represents the critical buckling pressure cor-
responding to an antisymmetrical mode of deformation, and To represents the

L breathing period of vibration of a complete ring having the some radius and

cross section as the arch.

It has been shown (ref. 2) that, for the conditions considered,

the a.ial force in the arch is fairly uniform along the arch and that the

maximum moment occurs at the crown. In view nf this, only the mowent and

the axial force at the crown will be considered.

Since the arch is uniformly loaded, in the application of the

approximate metnod, only the uniform compression mode and the bending-

copression mode need be co,,sidered. The former mode yie.l
, 

the axial force

in the arch, and the latter gives the moment at the crown. For t.e tri-

angular pulse investigated, the amplification factor, A.P., for an elastic

T system that is initially at rest is given by the following equations:

.4 For t < td,

A.F. -cos2et- n2 (13)
td T td T

...I
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In the above expressions, the quantity T denotes the natural period of the

! particular mode of deformwtion considered.

! 3.2 Comparison of Typical Resp2nse Curves. In Fig. 2 are shown

! the time-histories of the axial for.'e and the bending moment at the crown of

an two-hinged arch with the £ollowing diensions:

Rise-to-Span ratio f1 - 0.0 (corresponds to 4o 87.2l')

SSlendernas Ratio % L/r -100 (corresponds to -.r 72.5)

,h- intensity of the reak pressure and the duration of the pulse

Ia

!, are as follows:

IiT
-oPc 251 a td /T

The dashed %.rve, reproduced from Reference 2, way be considered to r-.present

I

the exact solution. The solid curve was obtained by the approximate method.

p u From Fig. 2a it ce on be seen that except for a light pase dfler-

ence which is of no importance from a design point of view, the approxate

solution f itfoi o e a is in very good ietn e t the "exact" solu-

tion. Included in thi figtre is also the dolutic n obtained by l silacing the

I
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jt value of the natural period of the un.fom compression mode by the value of

the "extensional mode of vibration of the arch. For the particular arch

-investintd, thle extensional mode correspcnds to the second sy-etrical

-mode of vibration (see Fig. 4.2b of Reference 2). The use of this period

does not alter the solution nignificantly.

In Fig. Zb, although the peak vales of the bending moment de-

termined by the two methods are in reasonable agreonnt, the periods of

I. the oscillations are significantly different. The indications are that th"

1- approximate method does not account properly fot the behavior of the system

in bending.

In order to gain better insight into the true behavior of the

system, the moment at the crown was evaluated by application of the rudal

method of analysis. In this analysis, the effect of the axial thrust on

bending was neglected. In Fig. 3 are given the modal contributiono for the

first three sysmetrical modes. In addition, the sum of these contributions

is compared with the exact solution. It can be seen that the solution based

on the first three modes is in good agreement vitn the exact solution. The

indications are that all three contributions, particularly the one asso-

ciated with the second or extensional mode, are quite important.

3.3 Effect of Pressure Intensity Parameter. In Figs. 4 and 5 are

shown time histories of the axial force and the bending moment at the crown

of the arch considered before, except thut the intensity of too peak pressure

has the values of po/Pcr - 0.5 and po/Per - 2.0. The other parameters of

v. the problem are the cane es those indicated in Fig. 2. The "exact" solu-

tlons presented in these and all subsequent figures are xeproduceO from

j Reference 2. In Figs. 4a and ce, the solld curies are identical vith the

,orreaponding curve in Fig. 2a, since in the -pp.,oximate method the axial'I
!
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force is considered to be indeperdent of the ratio po/pcr
. 

It is of Interest

to note that the best agreement between the approxima.e and exact solutions

i for axi force is obtained for Fig. 4a which corresponds to the smallest

value of po/Pcr considered. In general, the observation- thst can be mde

about the curves in Figs. 4 and 5 are similar -o those made about Fig. 2.

r3.4 Effect of Pulac Duration Parameter. The arch considered in1.

.he preceding section was also analyzed for values of td/To in the range

L between 0.25 and 4.0. In Fig. 6 are Siven the time-histories of the axial

- force and bending moment at the crown for a value of td To - 0.75, ard in

Fig. 7 are given spectrum curves for 'he complete range of td/To values con-

sidered. These curves express the absolute maximum value of the axial force

and bending moment at the crown as a function of the parameter td/To. -Both

the exact and the approximate solutions are indicated. It cn be seen that

the maximum axial force predicted by the approximate method is In very good

L agreement with that obtained by the "exact" method. On the other hand,

I there are significant differences between the values of the maximum moments

predicted by the two methods.

3.5 Effect of Arch Dimensions. Comparative solutions were ob-

tained for a number or arches with different dimensions. Two groups of

problems were considered:

Ii (a) Arches with a rise-span ratio, f/Lo,. of 0.2, and slenderness

ratios, Lo/r, of 50, 100 and 200.

L (b) Arches with a value of L0/r - 100 and rise-span ratios of

0.1, 0.2 and 0.5. The latter ratios correspond to values of 4P equal to

45.24
°

, 97.21' and 1600, respectively. The lotZ paraner¢c are takr, us

I po/pcr
-  

and td/To- 2.

I
!
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I Me rcsulte are sumdaried in Figs. 8 through 23. It can be seen

that, in all eases, the peak value of the axial force predictel by the

approxlrnaieetzod is in excellent agreement vith the exact value. On the

I other hand, both the time histories and the peak values of the bending

moments corresponding to the two methods of solution differ significantly

from one another. The peak values of the bsudin moments are compared in

Pigs. 10 and 13.

4. Comparisons for Arches Subjected to a Moving Pressure Pulse

7n Fig. 1h are shovn the results obtained for an arch subjected to

a moving pressure pulse. The pressure-tize relationship as represented by

I an initially peaked triangle. The problem para-.eters were:

f/L 0 -O.2 L0/r -lO0

Policr - 1, tt/T - 1, tdtt 

The quantity tt represents the transit time, i.e. the time required for the

t" front of the pulso to move across the arch. The remaining symbols have the

same meaning as before.

1In the approximate solution, the peak intensity of the symmetricta

component of loading (See Fig. 1) was taken as

PC " I T , (15)

1.5 + 05-'

and the corresponding intensity of the antisymmetrical or deflection-wde

component wae taken as

0
0.5 +0.5 7

d .it(16)

I .5 + 0.5,

The pressure-tine rclaticnship and the duration of t.ese component Inadings

were considered to be the sane as those of tte actual pulse.

I
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.1 From the results presented in Fig. 15 it can be seen that the

T approximate solution for the axial force is not in as good agreement with

the exact solution as for the cases considcreo previously. It ray be worth

nothing, however, that in this cnse the stress corr spondi to the maximum

axial force is relatively small in comparison to that resulting from the

maximun bending moment. 7he minmum bernL" roent occurs at the 3/4 point,

and its peac value is predicted with reasonable accuracy, as can be seenSfr , Fig. 14c.

In Fig. 15 are given response curves for moment at the 1/4 and

3/4 points of the arch considered before, except that the duration of the

pulse is represented by a value of t 2. It can be seen that the agree-

ment between the solutions obtained by the two methods is fairly good, par-

ticularly when the curves corresponding to the absolute maximum effect are

considered.

5. smm

I The results of the comparat.ve studies presented can be summarized

as follows:

L(1) For arches subjected to a uniform radial pressure, the approxi-

[mate method can predict with excellent accuracy the magnitude of the maximum
axial force in the arch. However, botb the time history and the magnitude

of the usximmu moment determined by this method may be sig.ificantly difterent

from the exact results. The results of a modal analysis that has been made

1suggest that the computation of the bending moment at the crown requires

U consideration of the ftrst three symmetrical modes of vibration.

(2) On the basis of the two solutions obtained for arches sub-

jected to a triangular moving pressure, it Iv",:s that the value of the

maxin moment predicted by the approximate metod is in reason(.ule agree-

Iment with the exact value. The axial forces are not p:vdicted as accurately
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in this case as for a sysuetriclA load; however, this may not be very

significant since the stress resulting from the maxi u= axial force is

I usually small in comparison to that due io the maximum moment.

1(3) It is believed that, for elastic arches, a more rational

approximate method of analysis can be developed by considering the con-

Itributions of the first two or three ?ynmtrical modes of vibration and

of the first antisyseetrical mode.
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DYNAMIC ANALYSIS OF CIRCULAR ELASTIC ARCIR3 BY MODAL METHODI
3. Object and Scope

I The general purpose or this study was to Investigate hie dynamic

response of elastic arches by application of the modal method of analysis.

Specifically, it was desired to evaluate the relative contribution of the

various natural modes to the total reeponse, and to establish f basis for

the development of a simplified method of analysis.

I Numerical solutions have been obtained for a range of the para-

i meters Involved, and the complete solutions incorporating the contributions

of all the natural modes of vibration were compared with corresponding

I approximate solutions obtained by considering a limited number of modes. At

attempt was made to determine the combination of the smallest ntmber of modes

3. which best approximates the complete solution. All solutions are for two-

hinged, circular, elastic arches subjected to a moving triangular prescure

pulse. In the analysis, the backling te:.dencies or the arch are neglected;

Iaccordingly, the response s proportional to the intensity of the applied

pressure.

IA digital computer program was developed for the numerical cooputa-

tion of the response. This pror/m has Iasn developed specifically for an

arch subjected to a moving pressure pulse of triangular shape. The replace-

ment system is consideied to have ten bars of equal horizontal projections.

A variable mode-counter set In the program makes it possible to consider any

desired nber of modes.

In addition to the numerical results, brief descriptions of the

substitute structure used in the method of ans.xyt s are Included in this

j report.

1
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J 2. Description of the Model

A general view of the physical model used to approximate the

actual aru in shown in Fig. 1. The model is giailar to that presented in

N Ref. 1*, with the exception that the continuous arch is rep!-.od by tenI
bars of equal horizontal projestiozs instead of ten bars of equal length.

With this arrangement the computation of the instantaneous distribution ofI

the load over the arch is simplified. The bars are considered to be mass-

less and rigid in both bending and axial deformation; the displacements ar

j angle charSes are defined at the joints.

The lumped mass at any Joint j is given by the equation

mj 2

where Ij is the length of the Jth bar and p is the mass per unit length of

the continuous arch.

Similarly the stiffness or the flexible joint at j is derived from

S the elastic properties of the actual arch between mid-points of consecutive

*panels and is given by the equatlo"

2 E

where Kj is the stiffness of Joint j, E is the elastic modulus, ar.d I is the

moment of inertia of the cross section of the arch.

The bars of the analogous framework are numbered consecutively

starting with j - 0 at the left hinge and terminating with J - 10 at the right

* Response of Arches under Dynamic Loads," by R.T. Eppink and A.S. 'velstsob,
University of Illinois Project, AYSWC - TR-60-53, Air For"e Special Weapons
Center, Kirtland Air Force Base, New Mexico, DThember 31960.

I
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hinge, as shown In Fig. 1. Bars are numbered in the sane order from I to 20,

with the bar connecting Joints J-i end J designated as bar J. The total

central opening angle of the arch is denoted by . The deformed ccnfigura-

tion of the arch axis is defined with respect to the ude~s.cd sla5 in

terms of the radial amd tangential conponents of the Joint displacements.

For Joint J these are designated as w, and v,. respective3y. Me displace-

ment vj is considered as positive radially inward, and vj positive clockwise,

as indicated in Fig. 1. The rotations of the bare are considered positive

in a clcokwise sense.

3. Method of Analysis

The method of analysis is based on the modal analysis technique

as applied to the substitute structure. The data required for such an analy-

L. sis include the natural frequencies and modes of vibration of the model.

[ Since the distributJon of the pressure along the arch varies with tine, the

participation factors for the various modes are tie-dependent quantities.

The analysis presented here is restrioted to the elastic range, end buckling

tendencies are ignored. In other words, the results are valid only for smnll

1. values of po/por
, 

where pcr is the buckling pressure of the arch.

The computation of the response involves the following steps:

i. Determination of the natural frequencies and modes of the sub-

* stitute Sl: uotue.

i. Determination of the load distribution across the arrm at any

tine.

iii. Computation of the modal participation factors corresponding

to a discrete system of time intervals, the tine increment chosen bet.:g small

enough to yield solutions which are reaonahbl' aicuatr.. Such a computation

involves the derivation of the governing paric..ation factor S.,ation forI
1



each mode. An apprcxlmate marching t::pe "f procedure was adopted for the

solution of the paricipation factor equation. In this procedure, the

I, ,xinantaeous participation factors and their time derivatives for each

1 mode are obtained by -re of the appropriate quantities at ihl previous 
t
!zeI

instant.

)iv. Superposition of the modes at any time instant considering

the respective participation factors.

I. In this report the details of the procedures are omitted. All

- solutions were obtained on the ILLIAC, the digital computer of the Jniver-

sity of Illinois.

* 4. Numerical Solutions

4.1 Problem Parameters. he properties of the arch are specified

I in terms of the following parameters:

y o - the total opening angle of the arch.

Lo/r the ratio of the span of the arch to the radius of gyra-

tlon of the cress-section of the arch, referred to as the

slenderness ratio.

1. The load parameters are defined with respect to the fundamental

breathing period, T0 , of a complete ring of the same radius and thickness.

This period is given by the equation

1MR

The loed parameters 
ae

r
t
d Duration of the blast utule
o ' Breathing peried of the complete ringt0

Time of travel of the peak rre-su=. front over th arcI span

O - Breathing period of the complete sig1
1



I 4.2 Problems Considered. ,sr.eical solutions were obtained for

the following values of the parameters:

9, -6 Lo/r. 100, tt/TO - l, /% - 2 and5

q_ - 6oe,  L~oIr = 50, ttl% - .1, tdIT 1 

2 - 5

;; 0 9 P, L%/r - 100, t,1/% 1-5, td/Td = 3 and 7.-5

0 - 9C
°,  

L,- 50, t/T-.15, ,T - 3,nd7.5

In all cases the time interval of integration vas taken as 0.05 T.

The response of the arch was evaluated for the following condi-

tions:

1. (i) Considering all eighteen modes of vibration

(ii) considering the first antisymmetrical mode and the first and

- cnecond sysmetrical modes. The latter solution will be referred to as the

three-mode solution. In addition, for several of the problems, solutions

were obtained conzidering only two modes of vibration. The combinations

considered Included the first symmetrical az4 the first antisycsetrical modes,

or the second symmetrical 4nd the Zirst antisy~etrical modes. Finally,

some solutions were obtained by considering the first two symetrical and the

I first two antisymmetrical modes. In this report only a few of these solu-

tions are presented.

14.3 Comparison of Solutions Obtained by To Different Methods. As

a check on the accuracy of the computer prc,,gr used to obtain the r.ue"ical

data presented herein, in Figs. 3 and 4 the tine histories of the displace-

ments, mocents, and thruats determnned by the eighteen node solution are com-

pared with those determIned by application of the --etaod dc.cribed in the

,&efee listed on p. 2.2. These results ar -an arch with o - 609 and

Lo/r -, 100. Tie first four circular natural frequencies and t, corrcspondinr

*1



l modes of vibration of thic s;ch are swon in Fig. 2. it can be seen that

there is fairly good agreement between the two solutions, thL =in=z

.1. dfflerence for the peak values of displacement. m ents, and thrusts

being less than . percent. The phase difference betmeen the two solutions1
is due to the slightly different procedures employed in -he two methods to

Lconcentrate the external pressure at the no.e points.

4.4 2resentation and Discussion of Res-ults. For eaca of the

F p.robol=. enumerated above, the solutions were szudied to determine the

combinaticrn of modes which beat approximated the eighteen mode solution.

Since the arch model considered has eighteen degrees of freedom, the

L eighteen mode solution represents the exact solution. In general, it was

found that the solution based on the first antisysmetrical mode and the

first two symetrical modes provided a very good approximation to the tonue

L In Figs. 5 through l4 are given the time histories of the response

curves for displacements, moments, nd xt.al forces at selected points of

the arch for several of the l,problt-s considered. Both the three mode solu-

tion and the eighteen mode solution are presented. It can be seen that the

two sets of solutions are consistently in good atreeuent. The best agreement

is obtained for displacements and axial forces. The moment curves are in-

fluenced to a greater extent by the higher moles than eithe, .ne deflection

or the axial force curves.

For displacements, reasonable agreement was also obtainea by con-

sidering only the first symmtrical and the first antisyumetricl modes.

However, the results for moment and axial forces were generally unsatisfactory.

The solutions based on the first antisynmetric'' .*ie and the seeond sym-

1



metrica mode ve-a gnerally no btte. than the tvo ode solution referred

to above. For displacements and moments, the greatest contribution to the

I response vas provided by the first sntisymetr.cal mode.

j 5. mayv

The res ults of this study indicate that a satisfactory method of

1 analysis for arches under moving pressures can be developed by considering

only the first antisy=etrical and the first tv syuetrical natural modes

of vibration.

I
I
1.

I

I
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AN APPROXIMATE THEORY FOR THE LARGE DYKA11C DEFIXTIONS
OF UNSYMMETRICALLY LOADED THIN 9PHERICAL SHEMlS

]i introduction

Presented herein is a general theory for the large deflections, but

small strains, of spherical shels Xoaded uncy.-trically by Uime-varying,

external pressures. Three equations in three displacement unknowns are

1. d veloped by a variational procedur-e employing Hamilton's Principle of

Least Action.

The strain enprgy function used in the formulation of the total

energy of the shell is developed under the assumption tnw. 0^- state of

stress is approximately plane; that is, the effect of transverse shear stress

I. and of transverse normal stress, acting on surfaces parallel to the middle

surface, may be neglccted. Thih assumption yields the usual Hooku's Law

relations used in ordinary plate theory.

LThe law of deformation of a fioer of the shell is governed by the

Kirchoff-Love Assumptions wstch sta,* that (a) points lying on a normal to

the undeformed middle surface remain on the same normal to the deformed

middle surface, and (b) tLe dl lplci ,ts in the direction of the normal to

the middle surface are approximately equal for all points on the same normal.

, These assumptions restrict the fo'.lowirg analysis t thin shells

< L). However, the equations of motion Include the effects of rotatory
a -20

inertia.

In the folloving dewelopment, the external pressure is assumed to

be caused by air blast, and is always Cirected normal to the outer surf.xce

of the shell.

The significant e.ontributione of this study include the i 'tention

I of all the important nonlinear ter-s in the strain-displaicment relations,

1
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and a rigorous calculation of the potential energ of the external pressure

to =ake possible the consideration of "dynamic %,,stability."

i Exact Strain-Displacement helatiunm

- The complete st~an-displacement relations for a spherical dome

have been derived earlier,
(2 ) 

and are eraiarizea here for convenient reference.

The position of any point on the shell in its undeformed state is defined by

the orthogonal curvilinear coordinates (owz). The dlspacenn vector

1. (u,v,w) is chosen such that u and v are tangent to tne and 9 coordinate

ylines, while w is directed outward along the surface normal (see Fig. i).

In the following relations, subscripts on u, v, w indicate partial

f derivatives, while subscripts on c and y indicate the direction of the strain

component. The radial distance to a point of the shell, a + z, is denoted by

ii r.

5
gg s T (u0 v ot ) + [ ( (v+)
OI"7(0" 1 v

Ii ~ ~ sinin t) se +)

r2

ez - + c [(u)2 + (9')2 + ( )2)

sin

- r(u +o(t e ot e) + vC1 z~ 2otO1w709 sn v 0)

I')sl u cot ... w) ()
si



!

T rle+V) + (v)(v ) + (w (eV
'Pz" (z r sin -) (1 W "

,i.

+e z) + 
u cot 0 + +)+ ( (

]" r (u n -9 o e) ' , -( si --

]I Assuption about Displacement Variation Through Thickness

The usual assumption in beens, plates and shells that normals rmain

normal, straight and inextensional in the d'cfor=ed state is used here. This

assumption about middle surface normals leads to the result that the displace-

ment vector (u,v,w) varies linearly with z through the shell thickness. Thus

we have:

1 u (e,9,z) - u0 (0,9,0) + z *0 ((2)O)

V (0,(P,z) - vo (O", o) + z 8o (0,(,o) (2)

J: v (e,q,z). vo0  , o

where (uo,vo0,o) Is the dic,la escz.t vector of a point on the middle surface

at z = 0. to is the rotation of the normal in the meridional plane. 6o is the

1' rotation of thic normal in a plane normal to the mer±Aional plane. If the.5.

rotatiens of the normal are small, w(z) vill not differ markedly froc v(z-0),

Iand so w is assumed to be independent of * and b.

i The rotations of the normal are d~termined from the Kirchoff-Live

Assuuptions. For the normal to remain straight during deformation, no shear

deformation may take place. This requires that

70Z " z " o0()

1 Substitution of Equations (1) and (2) into Eq. ,: yields two simultaneous

equations reluting -,, 5 and thtir de rk tives.

!
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*. t.Cv+U6 40 ) + 8 (ve+z%). u -

I 4 s e -"v cotS - z cot e) ")

v z i
+8(a+--

2
+---+- + +ucot + z ot+) sv- -

, sin 9 sin a s )in

Since * and 8 are independent of z, their values are required to

satisfy the auxiliary conditions: ft + 68 6, + 88P - 0. An aprooximate

solu+Ion to Eq; (31a) is

u-v

e_1 8. sinG 0(b)
*~~u a+w+trcot S + V9

I sin 9

1' Finally, to facilitate the derivation of the equations of motion,

we approximate Eq. (3b) as

1 Approxinate Strain-Displacement Relations

3 FroA the three-dimensional expression for Hooke's Law, the require-
.L

ment that az - 0 results in

1--O"  v) -v [(l- ) cz + (v)(C 0 + Cj

w ihich given Cz 1- SV( eP 5

Thus it is necessary enly to evaluate c.,9 011 y.d directly. Substitution

of Eqs. (2) and (4) into (1) results in (retaining only noninear tens int v

-nd its derivatives):

'I
I
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I ~ ue

%7- +-z 7-a a'+z a +c

L (6)

+2 2

asin a+z a+z 7+z 7.
[ ' -+  (W s +-w. "ot _.E w. "2 4. (a s2inS

2(a+z)
2  a sin e a sin 0

+ -z (vq cot 0 -)
a~sin e

i a sino a a+% a sin0 a+z in

.v co 0o v

a sin 0 "a sin 0 inin2 e -r, a ot

The term i/a'z may be expanded as:

LZ2+I.a a(9
( ) z a2z

and the principal strains msy be expressed in the form:

Ce - (A + Bc + c * ... )

I (D + F 0 +
7 t4 (J* Kzi L= 2 + .



?oflowirg the suggestion of Langhaar, (a) the expansions for the strans are

cut off af:jr the linear term in z. Subrtitutinn of Eqs. (9) end (10) into

- Eqs. (6), (7) end (6) then yields (rctain~ng only derivatives :,C w):

1. 2

a

D - - u cot e + s + - ) +a in0 2.2 sin2
9

a? ~ sin2

L 2assine

K 2 (vw cot e0- W.
a sing B

Stress Resultants

L In the case of plane stress.. the elastic strese-strain relations

asese the forms:

(C +v p ,Op- E ( 9+v6 , S 9 0

1.Substitution of Eqs. (11) and (i3) into the folliou. stress r'esultant

formulas results in:

IT f so( + 1)dz Eh [(A+vD) + Ka (B4vF)] (14)

n~,. o ( .) lz ih [(O,) (FfvB)] (15)

1' I dz 21
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N O,, j- 1,q (1 ; . Eh [j h
- 27h7v 2 ) (16)

Me fh2 ol, (1+ -) d - h3  
[ (B + vF) + (A + v) (7

h0j 0 1+)d 12(1-v 
2 ) L vD ()

* h (I+ dz . E0
5 
2 (F+,VR) +. 1 (18)~j

h 1+a 12(1-v Dv)

M 2 r( Eh

69r a1 +IK z 2- K+ 1(j)] (19)

V Strain Eerg'

For small strains, the elastic strain energy of deformation is

given by the volue integral:

2. Jr K F oca + O(Pe + W69 J(a+z) sin 0d~d~dz (20)

this can be expressed in terms of strains only by use of Eqs (13).
h

2(.lF 
2  f 2 "fO [e(02+'P2 + 2v CCP+ (L-_) 72]

2 2 2 (21)
(a+z) sin 0 dOd(dz

Replacing the strains by Eqs. (11) and performing the integrationp we ,

U U1 +U 2 +U 3  (22)

where:

Zha2  f27cf r A2 2 -2AD + (L-1 J21 8L. 0 d~d; (12)
U0 01

U ~ 2  
T rr2+2 2eF 0 U~)K]tn 0 didq' (24)1J•1 ",,.- -, o .



13 J [A'2+D2+2,,AD + j )J] '
S24( - 2

) (Pin 0 d(

S+ AB+DF+v(A.F+BD)+(-.)JKJ

U'J is the membrane strain energy due to stretching of the middle surface.

i is the usual expression for the flexural strain energy used in most theories

of thin shells. U is a correction to the bending energy due to the inclusioa

of the torc (a+z)
2 

instead of a
2 
in Eq. (21).

Kinetic Energy

I' The kinetic energy is given by the volume integralh 
27

T - f ( t + z't)2 + (Vt + cit)
2 + (wt)2 (a+%)2 sin 0 dOdpdc

-2 (26)

Potential 5nergy of External Pressure

During deformation, the elastiL tiain energy changes. Also, the

external presure does work, and th. corresponding changc of energy must be

included in the expression for the total energy.

The txternal pressure is considered to be caused by air blast. As

such it is directed normal to the outer surface of the shell. The potential

-I' energy of the external pressure is then given as:

! n . - fffq (27)

where Ld(V) is the change of ue infinitesimal element of volume. Since the

geometry of the shell is specified in polar coordinates (0,9), it is convenient

to use these coordinates in specifying the volid -,,.ge. An infinitesimal

element of shell volume is expressed as:

dV -
2 
sin O DOi D dp,

-7 1- 1
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vhe~e p is the distance from the center of u=deformed curiature to a point on

a. tht- outer surface. Calling %D the diatancc to a point on the deformed outer

surface, and pu the distance to a ",int on the undeformed outer curface, the

potential energj of the external pressure becomes:

f" l. - Jo Joq[ sin% do % -u in 0 (.8)

- "Aere:

S( a + V + (*)2 + ( " *)-I29

u 2

and the angles locating the deformed point are approximately:

r Du* )+I(1 u* ),
OD -aL +~ + v* 3 F + V -,

(30)
('a v* -. )3

( + 6*1 s Jsin 0 + u* cos 0) - a +. iw*lsino+u*cose0

where the starred quantities Indicate displacements on the outer surface,
I. h Equations () indicate that rD nd 9D do not depend on the squares

of the displacements. Thus, ve retain only the linear terms n these expres-

sions, and have:

dO D  dO + r u* d

+ 2 ",1(31)di (P l v)an T)s i 5

L OD - dT 
+  

h * ~

. ese relations are spproximate, and hased on the acntrption that b is a
function of 0 only, and 9D is a function of T only. With the relation that

1



ein 0 D  -3e+ 1' h_. _____

3=e a + + s yh (32)

+ cot 0 sin (*j-

the potential energy express on becomes:
£

- a +f+ (a + 1 + V*) U + Cosx+cot 0sin x

+ h a + sin 0 d dco

where: x h

+ (a + w).in 0 + ll* Cos 0 (a+ 7h) sin

Finally tha integrand may be expanded by u ing the following approximations:

[a + h we,)
2

+(u*)2 + (v*)J (a + h+v(*)
3 

+ +

(a +n x c a 1 Ui )2*) + u**) 2 v )

2+l++w* )+2(n+
h  

w

[ °+ +* a+ _

1 2

*1



I

Substitution of these spprox'-aie relatiors into Eq. (33) results In thao

I foliovirT expression for the potentiza eaelg" (w* - w):

S2J q.( + + (kl)((kk) - a+ n

L ~~~ - (a 4fnJ 9( l 2 i d8dT (3L)

where: h. (a + + 2)+ (. 4- -*

2 2 2 2

1+ U*ot 1 4
a ~2 a+ h

2.

k3  h (a (37)
a+ (a+)

2 
sine

-. EEuations of Motion

-- ne principle of virtnel ork, when extended to a dynamics problem

yields the useful relation

J ti (&P - ba- ) dt - 0 UP,)to

This is often referred to as "Hamilton's Principle." For a conservative

system, Eq. (38) becomes

3 =j. (T- U- n dt. -o (39)
10

Equation (39) implies that among all motions that will carry a conservative

system from a given configuration x'3 to a glvwn configuration A, in a given

time interval (totl], that ,hich accually o--e' provides a ctationary value

S ~ to the integral. The sigdficance of Et. (39) i. that the Euler-,agrange

equations for the integral are the dItfferentiai cquatiors of motlon for the

j systmi under cnsideration.



Su'stitution of eac.-gi'unctions from Eqs. (23)1, (2!.), (25), (26),
and (34) :4.to Eq. (,,)yields tefoloving varjatio.na1 equation:

(J2 (a+z) 21 t _tt) :i+ (_f. + 2o) I (Vt)] dz

- 2 2 [A .2 + 2idAD + (12-) 2

-Pt 2 fe 2(1- )

£ i of E2, 2 ) [2 + F
2 

+ 2vF + 1-) K2]si e d t o

F{A 2 + +2 2vAD +(j)J

L . A k { i+ DF + v(AI? + BD) + (1-V

+0 I(' + h2 + ') (k1 khk) + V(40

which becomes

1 + t (a)2 sin 0

L -
6n(uet~ + 43:.T)I

2(1a.2  
[A

2 
+D2 + 2vAD +( -2,, 1s

to0- 2 2]-v . 9

0 I 3
a2 [ 2 2 1-i +21B

tEh a + ., [ + + 2 ,A+ (--- in an

+ a&+. - v-D)+

El31

Ia ,~+ 2 + ")?112 k3) - (a ' )>in 4)

Ij
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wohere n =--

Designating the integrand o: Eq. (4i) by the symbol "fj" the

I £uler-lagrange Equations Assume the form:

P fn off i n () a d 6 rest n

J ~t t Ot 9

Performing the operations indicated in Eas. (42): (4+5), and (44+) results in

I three nonlinear partial differential equations In three unknowns (u,v,w).

, Mauy of the terms in these equations may 1'e replaced by their symbolic

representation as streas resultants. These thr~e equations, in terms of

I stress resultants are presented below.

. (62;M ;p- -~(a + M) +eot a(11, 11) + (H M,)

2 r
00[tt 2" ) Ott 19(45

S(aE~ + M + (ANg, + 14() + 2 cot 0 asN M,69 Sr 0 01(6)

1Z If :In~j 0 i* a~ n *

]I.
I



-- I sin 0 (H -N;

Z? I-~~. +eN - sine 0 n (V +,~ a N

WSn0 e- +%) P- +mN a - cos 0 (m + aDn1';)j

+ ( 'Me + 
)  . -ajv. ( (" + all,,) + 2 et ON40 + .n

"ph , , i- ctot 0t+ , ) +

1~1

(47)

I-
L In the limit, here n --- O, a ,d Whcre the no.nincerityr of E'. (47) is

11ne gect e.d theze eq ustins essme the o

2

+ + . -eL o "a j

i!, os e Ijc o) oNu. a2t (A9)

I~~~ + '+[g" ) + cot
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The left-band sides of Eqs. (49)., (50), and (51) are in the same fors as

i those dc-ived by Fl uge
( 3 ) 

by static cquilib",lsu considerations.

Equations (45) through (47), when coupled with tVc stress requltant

formulas y1eld th ce equatior.s in three unkuowns. These equaticns include

nonlinear, large-displacement effects, rotatory inertia effects, and the

effects of chage of geometry on the dynaic equiiibrium of the system.

This change of geometry effect enters in two ways. It enters all

three equations through the energy of the external pressure on a shell

surface whose area changes with time. It also enters the equation for radial

equilibrium, Eq. (47), due to the large deformation effect which alters the

line of action of the stress resultants. This latter effect is observed only

in Eq. (47) because only nonlinear terms in w and its derivatives have been

retained in Fqs. (12).

The nonlinear equations are too lengthy to express here in displace-

r ment form, however, the linearized Eqs. (49) through (51) are presented here:

v (cot a(l+nl oo + uo cot 0 + ( ) U(v + cot 2 o) v-(') v
sin

2  2 "s "in
)

e 2 in"

+ w 0 (.+v) - n9 .
0 w cot w0 ( -cot2e) + sin% 2vn

2 
rotO[lg o o si? 2 s 120

t 2 o ( 5 2 )

0

I
11'n5-v, u co , + ( v. cot + v 2I. 2 2 a (.. u o ' n ,lV( 2 otC

1+(i+V') wV j' "' 2w t

si j si sin50 rJ7 ,02



-3.16-

(1+n)(1+v) cot 0 u 2 wI

! "u99 + 12u cot e- UO cot
2
e + u cot 0 (3 + cot2o) + Ucot a

+ Vp+ 9V P e( cot+e ot2e)

1 ~ ~ s n 3t, sin 0 sin.6~+ct

- Weee e 0e cot , + ,89 (1 + v + cot2e)

- w cot e (2 -v , cot2e) - q - - ( - +4 cot2)

sin e sin 2

I2 e  2 %roe ctu Sn + 2 (i+v% + - 0(5)
sinO 

0
sio 11 2 (54

.2 EWhc: h n d 2

n : 12 ' 02 
= ps2 (l-v 2 )

Equations (52) through (54) agree exactly vith Eqs. 
8

5(a-c) of Ref. (5) except

for the omission of a term in Eq. 85(a) of Fll:gels text. These equations are

adequate to use in the computation of the natural frequencies of the apherical

3"c11. To ..n.the bucklarerecures however, the nonlincar terms of

IEqs. (45) through (47) zust be added to these equations. Also, the rotatory

!norte tcs can no longcr be emitted.

I

I
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